Lecture 7 — Exponential Maps

Lecture 7 — Exponential Maps

A note on coronavirus about the recent mail from Joanne Wright, the DVC(A).

Recall the Möbius transformation, and note that is is unique up to scaling for λ>0\lambda > 0. w=az+bcz+d=λaz+λbλcz+λd w = \frac{az+b}{cz+d} = \frac{\lambda az+\lambda b}{\lambda cz+\lambda d}

Remark: Any map from the inside of a (upper half) half-plane to the inside of a circle has the form w=eiαzz0zz0 for some αR,z0C,Imz0>0. w = e^{-i\alpha} \frac{z-z_0}{z-z_0}\quad \text{ for some }\alpha \in \mathbb R, z_0 \in \mathbb C, \operatorname{Im} z_0 > 0.

Exponential map

B.C. 103 (8Ed 104)

zez=expx=w,domw=C. z \mapsto e^z = \exp x = w, \quad \operatorname{dom} w = \mathbb C. Given a z=x+iyz = x+iy for x,yRx, y \in \mathbb R, w=ez=ex+iy=exeiy=ex(cosy+isiny)=u+iv where u=excosyv=exsiny. w = e^z = e^{x+iy} = e^x e^{iy} = e^x (\cos y + i \sin y) = u+iv\\[0.7em] \begin{aligned} \text{ where }\quad u &= e^x \cos y\\ v &= e^x \sin y. \end{aligned} This is easier to see by writing w=ρeiϕw = \rho e^{i\phi} where ρ=ex\rho = e^x, ϕ=y+2kπ\phi = y + 2k\pi for kZk \in \mathbb Z. This function is periodic in C\mathbb C.

Images under exp

Properties

Many of the properties of the real exp\exp extend to C\mathbb C. Such as - e0=1e^0 = 1. - ez=1/eze^{-z} = 1/e^z. - ez1+z2=ez1ez2e^{z_1+z_2} = e^{z_1}e^{z_2}. - ez1z2=ez1/ez2e^{z_1-z_2} = e^{z_1}/e^{z_2}. - (ez1)z2=ez1z2(e^{z_1})^{z_2} = e^{z_1z_2}.

However, some things do not extend: - ex>0 xRe^x > 0~\forall x \in \mathbb R but, for example, eiϕ=1e^{i\phi} = -1. - xexx \mapsto e^x is monotone increasing for xRx \in \mathbb R but zezz \mapsto e^z is periodic with period 2πi2\pi i.

Note: As in R\mathbb R, ez=0e^z = 0 has no solution in C\mathbb C. If there was some z=x+iyz = x+iy such that ez=0e^z = 0, then exeiy=0    ex=0e^x e^{iy} = 0 \implies e^x = 0 because eiy=1|e^{iy}| = 1, contradiction.

Inverses

B.C. 31-33 (8Ed 30-32)

We have a function f:ΩCf : \Omega \to \mathbb C. Then, g:RangefΩg : \operatorname{Range}f \to \Omega is an inverse of ff if gf:ΩΩg \circ f : \Omega \to \Omega is the identity. That is, (gf)(z)=z(g \circ f)(z) = z for all zΩz \in \Omega.

Example: zz+1z \mapsto z+1 and zz1z \mapsto z-1 are inverses for CC\mathbb C \to \mathbb C. z1/zz \mapsto 1/z is its own inverse CC\mathbb C_* \to \mathbb C_*.